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We demonstrate the storage of 1000 holograms in a memory architecture that makes use of different
wavelengths for recording and readout to reduce the grating decay while retrieving data. Bragg-
mismatch problems from the use of two wavelengths are minimized through recording in the image plane
and using thin crystals. Peristrophic multiplexing can be combined with angle multiplexing to counter
the poorer angular selectivity of thin crystals. Dark conductivity reduces the effectiveness of the
dual-wavelength method for nonvolatile readout, and constraints on the usable pixel sizes limit this
method to moderate storage densities. © 1997 Optical Society of America
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1. Introduction

When a photorefractive crystal is used as the record-
ing material in a holographic memory, the recorded
gratings decay when illuminated by the readout
beam. Several methods have been developed to ad-
dress this problem.1–10 We use the dual-wavelength
method8–10 to demonstrate experimentally the long-
term storage of 1000 holograms. The motivation for
using different wavelengths of light for recording and
readout is simple: If a crystal has an absorption
spectrum with a substantial variation as a function of
wavelength, by recording at a wavelength l1 at which
the crystal is highly sensitive and reading out at a
second wavelength l2 at which the crystal is rela-
tively insensitive, we can reduce the decay of the
gratings caused by the readout illumination.

Implementing the dual-wavelength method is
straightforward for a single grating. Figure 1 shows
the dual-wavelength configuration for the transmis-
sion geometry, along with the corresponding k-space
diagram. Similar diagrams can be drawn readily for
the reflection and 90° geometries also. A grating is
recorded in the usual manner, with signal and refer-
ence beams at the first wavelength l1. We recon-
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struct this grating at the second wavelength l2 by
introducing the readout beam at an angle tilted with
respect to the recording reference beam. We assume
that the wave vectors of all the beams lie in the
horizontal ~x–z! plane. Bragg-matched readout oc-
curs when the readout beam is positioned such that
the grating vector lies at the intersection of the two k
spheres. The condition necessary for achieving
Bragg-matched readout must satisfy the following
relationships10:

sinF1
2

~fr 1 fs!G
l2

5

sinF1
2

~ur 1 us!G
l1

, (1)

fr 2 fs 5 ur 2 us.

In the above, ur and us are the reference- and the
signal-beam angles, respectively, at l1; and fr and fs
are the reference- and the diffracted signal-beam an-
gles at l2. All angles and wavelengths are defined
inside the crystal, with angles measured with respect
to the z axis ~the normal to the crystal face!.

Although we can easily Bragg match a single grat-
ing, when a hologram of an image that consists of
many plane-wave components is recorded, it is gen-
erally impossible to match the entire spectrum simul-
taneously with a single plane-wave readout
reference. We show that, by use of a sufficiently thin
crystal and the peristrophic multiplexing tech-
nique,11 a large number of holograms can be stored
and recalled with a single plane-wave reference.
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2. Dual-Wavelength Readout of Complex Signal

Recording an image that consists of many plane-wave
components can be represented in k space by a cone of
signal vectors that interferes with the reference beam
to record a cone of grating vectors, as shown in Fig. 2.
When we attempt to reconstruct the signal with a
reference at l2, only the gratings that lie on the circle
of intersection between the two k spheres are exactly
Bragg matched. Hence only an arc of the signal cone
is strongly reconstructed.

The diffracted intensity Idiff of the hologram recon-
struction at l2 is given by

Idiff , sinc2S L
2p

DkzD , (2)

where L is the crystal thickness and Dkz is the pa-
rameter that determines the degree of Bragg mis-
match. For a plane-wave component in the signal

Fig. 1. Dual-wavelength scheme in transmission geometry with
the corresponding k-space diagram for Bragg matching a single
grating.

Fig. 2. k-sphere diagram for the dual-wavelength transmission
geometry with a complex signal ~assumes l2 . l1!.
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beam whose k vector lies in the x–z plane and is offset
from the central zero-order component by Dus, the
Bragg mismatch Dkz is given by

Dkz 5 2p(cos fr

l2
1

cos ~us 1 Dus! 2 cos ~ur!

l1
2 HS 1

l2
D2

2 Fsin fr

l2
2

sin ur 1 sin ~us 1 Dus!

l1
G2J1y2). (3)

If Dus 5 0 and Eq. ~1! is satisfied, then Dkz 5 0 and
Idiff is maximum. As Dus increases, the diffracted
power decreases.

For simplicity let us consider the range of recon-
structed signal components to be those that lie within
the main lobe of the sinc envelope function. In prac-
tice the range will be slightly narrower because there
will be some minimum detectable intensity threshold
that limits us before we reach the first null. There
will also be faintly reconstructed sidelobes outside
the main lobe. We neglect variations normal to the
plane of interaction between the signal and the ref-
erence beams ~the y direction in Fig. 2!, i.e., we ap-
proximate the reconstructed arc to be a straight line,
which is reasonable for signal cones with small an-
gular bandwidths. Equating Dkz to 2pyL and solv-
ing for Dus yields the angular location of the first null
of expression ~2! within the signal cone. If we make
the approximation that l1, l2 ,, L ~which is almost
always true for the wavelengths and the crystals that
we use in practice!, then the angular bandwidth of
the main lobe of the sinc function can be approxi-
mated by

sin Duso 5
l1 cos fs

L sin~fr 2 ur!
, (4)

where Duso is the usable bandwidth of the signal cone
in the x–z plane. Note that fs and fr are not inde-
pendent variables; they are both determined by the
recording beam angles us and ur and the wavelengths
l1 and l2, as shown in Eq. ~1!. Also note that after
we select l1 and l2 we can still make the signal
bandwidth arbitrarily high by decreasing L. There-
fore there is a trade-off between the usable signal
bandwidth and the number of holograms that can be
angularly multiplexed at one location.

3. Reconstruction Effects

The effect on the reconstructed image of limiting the
bandwidth of the signal cone depends on whether we
record in the Fourier plane or the image plane. We
first consider the case of recording in the Fourier
plane @Fig. 3~a!#. When we record in the Fourier
plane, each plane-wave component of the signal beam
that enters the crystal corresponds to a spatial loca-
tion ~pixel! on the input image. Hence, if we recon-
struct only a limited angular bandwidth Duso of the
signal cone in the x dimension, we expect to recon-
struct a strip of the image, limited in the x dimension.
An example of such a reconstruction is shown in Fig.
3~b! for l19 5 488 nm, l29 5 633 nm ~wavelengths in



air!, and L 5 4.6 mm. In the figure we see a slight
arc in the reconstruction resulting from the Bragg
mismatch in the y dimension as well as side lobes
from the sinc modulation in the x dimension. The
curvature that is observed experimentally is due to
the fact that the intersection of the two k spheres in
Fig. 2 is a circle, and a small arc of this circle is
spanned by the signal cone. This effect was ne-
glected in the derivation of Eqs. ~3! and ~4!.

From the system geometry, we can derive the
width W of the reconstructed image strip:

W 5
2Fn sin Duso

~1 2 n2 sin2 Duso!
1y2 , (5)

where F is the focal length of the Fourier transform-
ing lens and n is the refractive index of the material
at l1. We assume the crystal to be in air and the
central component of the signal beam to be on axis.
For signals tilted from the crystal normal, Eq. ~5!
must be adjusted for variations resulting from the
Snell law. In Fig. 3~c! we show how the entire image
can be sequentially scanned by changing the angle of
the readout reference to reveal different portions or
strips of the stored image.

Recording in the image plane @Fig. 4~a!# is an-
alagous to recording in the Fourier plane except that
in place of the input image we would have its Fourier
transform. Therefore, instead of reconstructing a
strip of the image, we reconstruct a strip or band of
the frequency spectrum of the image. If we position
the readout reference to Bragg-match the zero-order
component of the image, the resulting reconstruction
will be a low-pass-filtered version of the original in
the x dimension. Figure 4~b! compares the recon-

Fig. 3. Fourier-plane recording: ~a! system setup, ~b! compari-
son of input image and reconstruction at l2, ~c! reconstructions
with three slightly detuned angles of the l2 reference beam R2.
struction at l29 5 633 nm to that obtained by the
original ~l19 5 488 nm! reference. Note the blurring
of the edges in the x dimension that results from the
loss of the high-frequency components of the input
signal. The angular spread a owing to the aperture
of a pixel of width dx is

sin a 5
l

dx
. (6)

We equate a to Duso in Eq. ~4! and solve for dx to
obtain a rough estimate for the minimum pixel width
dx,min that can be reconstructed by the second wave-
length,

dx,min 5
L sin~fr 2 ur!

cos fs
. (7)

In a manner similar to the Fourier case, we can also
scan the reference beam to bandpass different fre-
quency components of the original image.

A number of solutions have been proposed for the
Bragg-mismatch problem of the dual-wavelength
scheme. Most have dealt with Fourier-plane record-
ing, such as the use of spherical readout beams8 to
Bragg-match a larger range of the signal cone or
interleaving strips from adjacent holograms.10 We
can also recover all the necessary information by re-
cording in the image plane, without the added com-
plexity of the above methods, if we simply adjust the
system parameters according to the resolution of the
images that we wish to store.

From Eq. ~4! we see that we can maximize Duso by

• reducing the crystal thickness L,
• using wavelengths l1 and l2 that are as close

together as possible, or
• reducing the angle between the signal and the

reference beams.

Figure 5~a! shows a reconstruction of a random
pixel pattern with four regions of different pixel sizes,
from 50 to 200 mm2, recorded in a crystal of thickness
L 5 4.6 mm. The recording parameters were l19 5

Fig. 4. Image-plane recording: ~a! system setup and ~b! compar-
ison of input image and reconstruction at l2.
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488 nm, l29 5 633 nm, us 5 0°, and ur 5 11.6°, which
correspond to a theoretical minimum acceptable pixel
size of dx,min ' 140 mm. From the figure we see that,
although there is always the edge blurring in the x
direction, we can still easily distinguish between ON

and OFF pixels for the 150- and 200-mm pixels, but we
get a progressive loss of detail for smaller pixel sizes.
Figure 5~b! shows how the signal-to-noise ratio ~SNR!
of the images varies with pixel size. Here we defined
SNR as

SNR 5
m1 2 m0

~s1
2 1 s0

2!1y2 , (8)

where m1,0 and s1,0
2 are the mean and the variances

of the ON ~1! and the OFF ~0! pixels. Depending on the
application, we can choose the pixel size to achieve
the desired SNR.

Figure 6 shows two image-plane reconstructions of
the same pattern—one recorded in a 4.6-mm-thick
crystal and another in a 0.25-mm-thick crystal. Us-
ing the same recording geometry we used for Fig. 5,
we compared dx,min for the thinner crystal at 7.6 mm
with 140 mm for the thicker crystal. This is evident
in Fig. 6, where the reconstruction from the thinner
crystal preserves the higher spatial frequencies so
that the edge blurring is hardly noticeable. Rectan-
gular pixels were used for these images for demon-
strating that the pixel-size limitation is only in the x

Fig. 5. ~a! Reconstruction of data mask with pixel sizes varying
from 50 to 200 mm2, recorded in a 4.6-mm-thick crystal, recorded
with l19 5 488 nm and read with l29 5 633 nm. ~b! Plot of SNR
versus pixel size from the image in ~a! compared with SNR mea-
sured from the data mask imaged through the crystal and when
reconstructed with the original l1 reference ~images not shown!.
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dimension; even the thicker crystal reconstructs high
spatial frequencies cleanly in the y dimension.

The main problem that results from the use of
thinner crystals is a loss in the angular selectivity.
The first null of the angular selectivity function is
given by12

Df 5
l29

L
cos fs

sin~fr 1 fs!
, (9)

where Df is the angle outside the crystal by which we
must rotate the reference beam ~or, alternatively, ro-
tate the crystal! to reach the first null. l29 is the
readout wavelength outside the crystal, and fs and fr
are the beam angles inside the crystal. Because the
selectivity is inversely proportional to the crystal
thickness L, changing to a thinner crystal reduces the
number of angular locations at which we can store
holograms.

We can store a large number of holograms in a thin
medium by using peristrophic multiplexing11 in ad-
dition to angle multiplexing. For peristrophic mul-
tiplexing we rotate the crystal about the normal to its
surface. This causes the reconstructions from adja-
cent holograms to be separated spatially at the Fou-
rier plane so that we may selectively pass a single
hologram by placing an aperture at this plane. The
peristrophic selectivity for image-plane recording is
given by

Dc 5
2l2

dy~sin fs 1 sin fr!
, (10)

where Dc is the angle by which we must rotate the
crystal around its normal between peristrophic loca-

Fig. 6. ~a! Reconstruction of data mask with pixel widths varying
from 100 to 250 mm, recorded in a 4.6-mm-thick crystal. ~b! Same
image reconstructed from a recording in a 250-mm-thick crystal.



tions, and dy is the pixel size in the y dimension.
What is important to note from this equation is that
this selectivity is insensitive to the crystal thickness
L. Therefore, while we suffer in angular selectivity
by using thinner crystals, the peristrophic selectivity
remains unchanged.

It is unfortunate that peristrophic multiplexing in-
troduces a new problem of its own. Unlike pho-
topolymers, with which peristrophic multiplexing
was originally demonstrated, the recording behavior
of photorefractive crystals depends on the orientation
of the crystal with respect to the gratings being writ-
ten. Therefore, as we rotate the beams or the crys-
tal, the recording efficiency of each location will be
different. A related problem is the possibility of ob-
serving double gratings13 if the polarizations of the
recording andyor readout beams are not maintained
in alignment with the ordinary or extraordinary axis
of the crystal as the crystal is rotated peristrophi-
cally. This could be done with circularly polarized
beams and polarizers attached in front of the crystal;
however, for small peristrophic rotations it is suffi-
cient to use fixed polarizations relative to the plane of
interaction. No secondary reconstructions were ob-
served experimentally for peristrophic rotations of
less than 10°.

Figure 7 shows experimental plots of the writing
slope ~the time derivative of the square root of dif-
fraction efficiency during recording, Aoytw! versus
crystal rotation for peristrophic and angular tilts of
the crystal in the image-plane geometry setup shown
in Fig. 8. As expected, the recording efficiency drops
off quickly as the c axis of the crystal is rotated away
from the direction of the grating during peristrophic
rotation. The variation with angular tilt does not

Fig. 7. Variation of recording slope ~Aoytw! with peristrophic and
angular crystal tilts.
peak when the signal and the reference beams are
symmetrically oriented around the crystal normal as
might be expected. This asymmetry is due to addi-
tional contributing factors such as variations in
Fresnel reflections and changes in the shape of the
hologram interaction region inside the crystal as the
crystal is tilted in angle.

The conventional exposure schedule14 for record-
ing multiple holograms with equal diffraction effi-
ciencies assumes that all holograms record at the
same rate and are characterized by a uniform writing
slope Aoytw. Because Aoytw varies with the record-
ing position in our case, we must derive a new sched-
ule that compensates for the variation in recording
behavior. We model the recording and erasure be-
havior as shown in Fig. 9. Each hologram is as-
sumed to have a unique writing slope ~Aoytw!m,
where m is the hologram number; but all holograms
are assumed to share a common erasure time con-
stant te. If all holograms decay at the same rate, for
maintaining uniform final diffraction efficiencies, we
must only ensure that each new hologram is written
to the point that its grating strength equals that of
the previously written holograms as they decay. We
can write this requirement as

Am 5 Am11,

Ao,m@1 2 exp~2tmytw,m!#exp~2tm11yte!

5 Ao,m11@1 2 exp~2tm11ytw,m11!#, (11)

where, for the mth hologram, Am is the grating am-
plitude, Ao,m is the grating amplitude at saturation,

Fig. 8. System setup used for the dual-wavelength experiments.

Fig. 9. Model for determining the compensated exposure sched-
ule; it allows variation in the recording rate at each location but
assumes that all holograms share a common decay rate.
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tw,m is the writing-time constant, and tm is the expo-
sure time. Solving for tm we obtain

tm 5 2tw,m lnH1 2
Ao,m11

Ao,m
exp~tm11yte!

3 @1 2 exp~2tm11ytw,m11!#J , (12)

which gives us an iterative formula for calculating all
the recording times, given an exposure time for the
last hologram and knowing all the writing time con-
stants and grating saturation amplitudes.

If we make the approximation that tm ,, tw,m, this
simplifies to

tm 5
~Aoytw!m11

~Aoytw!m
tm11 exp~tm11yte!, (13)

for which we need to know only the relative magni-
tudes of the writing slopes, which we can obtain from
the plots of recording slope versus crystal position in
Fig. 7. Eq. ~13! differs from the conventional sched-
ule by the ratio of writing slopes. It can be shown
that it is slightly better to record the holograms in the
order of decreasing Aoytw, but the difference is mar-
ginal.

4. Experiment

Figure 8 shows the experimental setup used for the
dual-wavelength image-plane architecture. It con-
sists of two 4f systems to image the input object
through the crystal and onto the CCD detector, with
two separate beam paths for the recording and the
readout reference arms. We used l19 5 488 nm po-
larized out of plane for recording and l29 5 633 nm
polarized in plane for readout, provided by an argon
ion and a He–Ne laser, respectively. The photorefrac-
tive crystal was a LiNbO3:Fe ~0.015%! crystal, 4.6 mm
thick, cut from a boule obtained from Crystal Technol-
ogy, Inc., Palo Alto, Calif. The crystal was mounted
on two rotation stages: One provided the angular tilt
and the other the peristrophic tilt. The angle be-
tween the recording signal and the reference beams
outside the crystal was 28.3°. The signal beam was
on axis and the crystal c axis was in the x–z plane.
The origin around which the angular and peristrophic
rotations were referenced was where the crystal was
positioned such that the c axis coincided with the x
axis.

The measured angular selectivity for this geometry
was Df 5 0.035° for the first null with the 633-nm
reference. In the experiment we used angular off-
sets of 0.2° to space the holograms past the fifth null
to minimize cross talk. The theoretical peristrophic
selectivity from Eq. ~10! was Dc 5 0.79°, whereas in
practice we used peristrophic spacings of 2° to avoid
cross talk from the sidelobes of the Fourier transform.
Using 50 angular locations ~from 24.9° to 14.9° tilt!
and 20 peristrophic locations ~from 29° to 19° and
171° to 189°!, we recorded 1000 holograms with a
150-mm-pixel random bit pattern mask as input.
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Using a conventional exposure schedule, we get a
comb function of diffraction efficiency for the 1000
holograms, as shown in Fig. 10. Each sawtooth in
the comb function corresponds to an angular sweep
from 24.9° to 14.9° at a single peristrophic location.
The slower variation is due to the peristrophic rota-
tion. Also shown in the figure is the predicted comb
function based on the recording slope variations from
Fig. 7, where we extrapolated recording slopes for
intermediate combinations of peristrophic and angu-
lar tilts from the two plots. The amplitude mis-
match between the curves is simply due to the fact
that the recording slopes used in the prediction were
measured under different experimental parameters.
Figure 11 shows the resulting comb function after the
application of the compensated exposure schedule.
The diffraction efficiencies are considerably more uni-
form at approximately 6 3 1026.

Of the 1000 holograms, we visually inspected ap-
proximately 100 for uniformity, and we randomly
chose five for SNR and probability-of-error analysis.
Figure 12~a! shows the original input image as seen
through the crystal, a sample reconstruction at 488
nm, and two reconstructions at 633 nm. For holo-
gram 263, we also show histograms for the 488- and
633-nm reconstructions in Fig. 12~b!.

We measured the SNR by averaging CCD pixel
values within each image pixel ~each image pixel cor-
responded to approximately 13 3 12 CCD pixels! and

Fig. 10. Experimental and predicted distributions for the diffrac-
tion efficiencies of 1000 holograms when recorded with the con-
ventional exposure schedule.

Fig. 11. Diffraction efficiencies for 1000 holograms recorded with
the compensated exposure schedule.



then determining the SNR as given in Eq. ~8!. Prob-
ability of error was calculated, assuming x2 distribu-
tions to the histograms. For the reconstructions
that were read out with the original reference at 488
nm, the SNR ranged from approximately 3.0 to 4.0,
with corresponding probabilities of error from 1024 to
1025. The results for the reconstructions at 633 nm
were better than those at 488 nm despite the low-
pass-filtering effect of the dual-wavelength image-
plane readout. For the 633-nm reconstructions, the
SNR varied from 3.5 to 5.5, with probabilities of error
from 1025 to 1027.

There are two main reasons for the improvement in
reconstruction quality with 633 nm as opposed to 488
nm. One reason is that the 633-nm reference beam
was polarized in plane whereas the 488-nm reference
was polarized out of plane. Hence the 633-nm re-
construction benefited from a higher diffraction effi-
ciency. The second factor is the method used for
averaging pixel values in the reconstructions: the
program we used to calculate SNR averages the CCD
pixels only within a margin of each image pixel; edge
values are discarded. Hence any blurring effect at
the edges of pixels in the x dimension becomes less of
a factor for the SNR and the error calculations.

5. Erasure

We now examine how well the dual-wavelength ar-
chitecture reduces the decay rate resulting from the
readout illumination. We recorded two holograms
with the same exposure at 488 nm and erased one
with a non-Bragg-matched beam at 488 nm and the

Fig. 12. ~a! Sample images from 1000-hologram experiment with
~b! corresponding histograms for l1 and l2 reconstructions.
other with an equal intensity ~21.4 mWycm2! beam at
633 nm, periodically monitoring the grating strength
by probing with a 633-nm readout beam. The decay
rate was also measured with no erasure beam to
determine the decay contribution from dark conduc-
tivity as well as from the monitoring beam. The
decay characteristics are plotted in Fig. 13~b!. The
measured erasure time constant ~which includes the
effects of dark erasure! for the 488-nm erasure was
te,4889 5 3.21 h, while that for the 633-nm erasure
was te,6339 5 35.6 h, giving a reduction in the readout
decay rate by a factor of 11.1. However, after fac-
toring out the dark decay ~te,dark 5 194 h!, modeling
the overall decay as

exp~2tyte9! 5 exp~2tyte!exp~2tyte,dark!, (14)

where te9 is the measured erasure time constant in-
cluding dark effects, te is the erasure time constant
resulting from the erasing illumination, and te,dark is
the erasure time constant resulting from the dark
conductivity and erasure from the monitoring beam,
we find the actual contribution caused by the illumi-
nation to be te,488 5 3.27 h and te,633 5 43.6 h, cor-
responding to a ratio of 13.3.

The absorption spectrum for this crystal is shown
in Fig. 13~a!. For the two wavelengths used in our
experiment, the absorption coefficients were a488 5
0.55 cm21 and a633 5 0.26 cm21. The ratio of these
coefficients is 2.1; therefore the ratio of 13.3 in era-
sure time constants was larger than expected. At
this point we have not yet developed a theoretical
model to predict relative erasure times from the ab-

Fig. 13. ~a! Absorption spectrum and ~b! decay curves for the
LiNbO3:Fe crystal.
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sorption spectrum. However, it should not be en-
tirely surprising that the ratio of absorption
coefficients is different from that of the erasure time
constants because not every photon that is absorbed
will contribute toward the erasure of the hologram.
For example, some energy will be absorbed by the
lattice, or an electron may be excited into the conduc-
tion band but immediately trapped again. Still, we
expect that larger ratios in absorption coefficients
will be reflected in larger ratios in erasure time con-
stants.

One important note is that the choice of crystal and
the wavelengths used in this experiment were not
optimized for the dual-wavelength architecture but
were based on the lasers available in the laboratory.
The crystal was one that we have had good results
with in the past, and 488 and 633 nm were laser
wavelengths that were readily at hand with good
power output. However, to maximize the benefits of
the dual-wavelength scheme, we can certainly be
more selective in our choice of crystal and system
parameters.

For instance, Fig. 14~a! shows the absorption spec-
trum for a doubly doped LiNbO3:Fe:Ce ~0.05% Fe,
0.03% Ce! crystal from Deltronic ~Deltronic Crystal
Industries, Inc., Dover, N.J.! that we have also used
in dual-wavelength experiments. This crystal ex-
hibits a range of absorption coefficients over the same
range of wavelengths that is much wider than the
crystal that we used for the 1000-hologram experi-
ment. We tested this crystal using l19 5 633 nm for
recording and l29 5 850 nm for readout, correspond-
ing to absorption coefficients of a633 5 3.83 cm21 and
a850 5 0.32 cm21, respectively. This gives a ratio of

Fig. 14. ~a! Absorption spectrum and ~b! decay curves for the
LiNbO3:Fe:Ce crystal.
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12.0 of absorption coefficients, nearly 6 times that for
the previous crystal and wavelengths.

Figure 14~b! shows the erasure characteristics that
we measured for the two wavelengths with equal
intensities of 15.7 mWycm2, as well as for the dark
erasure. From the data we obtained the erasure
time constants ~including dark effects!, te,6339 5 4.06
h and te,8059 5 21.9 h. Again, factoring out the dark
erasure ~te,dark 5 23.8 h! according to relation ~14! to
get the true decay contributions caused by the illu-
mination, we get te,633 5 4.79 h and te,850 5 273.4 h,
giving a reduction in the erasure rate by a factor of
57.1.

These results verify that we can reduce greatly the
decay caused by the readout illumination by using a
second wavelength at which the crystal is relatively
insensitive. However, the results also illustrate a
fundamental limitation of the dual-wavelength
scheme, and that is the problem of dark erasure.
Although we may factor out the dark decay in calcu-
lating the effectiveness of using two wavelengths, we
cannot ignore it in practice and it will remain a lim-
iting factor of this approach.

6. Storage Density

Previously we demonstrated the storage of 1000 ho-
lograms with the dual-wavelength architecture.
Now we examine the theoretical limits of this method
in terms of the potential storage density of an image-
plane system. Because of the limitation on pixel size
imposed by the dual-wavelength method, there will
necessarily be a reduction in storage density com-
pared with what could be achieved by the normal
single-wavelength scheme ~reading out the holo-
grams with the original reference beam!. The fol-
lowing analysis is a simplified version of that done by
Li15 for determining storage density.

Because we are dealing with transmission geome-
try, we use the surface storage density as the figure of
merit. We can write the surface density D as

D 5
NfNcNpxNpy

A
, (15)

where Nf is the number of angular multiplexed loca-
tions; Nc is the number of peristrophic locations; Npx
and Npy are the number of pixels in the x and y
dimensions, respectively, in each hologram; and A is
the surface area of the hologram.

For simplicity, we assume the signal beam to be
normal to the crystal face and that angular multi-
plexing is achieved by tilting the angle of the refer-
ence beam instead of by rotating the crystal. This
way we may treat the hologram area as constant for
allmultiplexing locations. Further,wetake theholo-
gram area to be that at the image plane inside the
crystal, neglecting the defocusing effect of the signal
beam away from the image plane. This is acceptable
if we filter out the reconstructions from adjacent re-



cording locations at a subsequent image plane. We
may then write the hologram area as

A 5 ~Npxdx!~Npydy!, (16)

where dx and dy are the x and y dimensions of each
pixel in the image. Equation ~15! then becomes

D 5
NfNc

dxdy
, (17)

which is simply the number of holograms that can be
multiplexed at the same location divided by the area
of one pixel.

The number of angular multiplexed locations we
can access by tilting the reference beam is deter-
mined by the span of angles available for the refer-
ence and by the angular selectivity. If a rotating
mirror and 4f system are used to tilt the reference
beam, then the total angular range F is limited by the
aperture of the lens and the beam width and is given
by

F 5 2 tan21SA 2 W
2F D . (18)

W is the width of the reference beam, and A and F are
the aperture and the focal length, respectively, of the
4f system. The angular selectivity Df in the dual-
wavelength case is given by Eq. ~9!. If we record at
the second null, the total number of angular multi-
plexed locations is then simply

Nf 5
F

2Df
. (19)

Although we used peristrophic multiplexing in our
1000-hologram experiment, it is not a practical mul-
tiplexing method in a high-density storage system
where small pixels must be used. For pixel sizes of
the order of a few micrometers, the peristrophic se-
lectivity will be of the order of tens of degrees. This
is especially limiting when we record with photore-
fractive crystals in the transmission geometry be-
cause we are constrained to a relatively small range
of angles that we can tilt the c axis while we still
maintain acceptable recording efficiencies ~refer to
Fig. 7!. Use of peristrophic multiplexing would gain
us perhaps a factor of only 2–6 in density; hence we
neglect it in this analysis.

The minimum pixel dimension we may use in the y
dimension is determined by the resolution limit of the
system optics according to the relation

dy 5
l29

sinFtan21S 1
2~ f-number!DG

. (20)

However, the x dimension is constrained by the min-
imum pixel width dx,min of the dual-wavelength
scheme, given by Eq. ~7!, which for us 5 0° becomes

dx 5 L tan fs. (21)
Combining all terms, we obtain the final density
equation:

D 5
sin~fs 1 fr!

l292 sin fs
tan21SA 2 W

2F D
3 sinHtan21F 1

2~ f-number!GJ . (22)

For example, with the parameters l19 5 488 nm, l29
5 633 nm, us 5 0°, ur 5 10°, W 5 1 cm, A 5 5 cm, and
F 5 5 cm ~f-number 5 1!, then D 5 3.7 bitsymm2.
Note that this formula is independent of the crystal
thickness L. Although we might improve the stor-
age density of a single-wavelength system by increas-
ing the crystal thickness ~and thus reducing the
angular selectivity!, in the dual-wavelength case this
increase in the number of angular multiplexing loca-
tions is cancelled by a corresponding increase in
dx,min, which reduces the number of pixels per page.
The density that can be achieved with the dual-
wavelength scheme becomes comparable with that
for one wavelength only if the crystal is thin or if the
two wavelengths are close enough to each other so
that dx,min approaches dy ~the resolution limit of the
optics!.

7. Conclusion

A dual-wavelength architecture can significantly re-
duce the decay of holograms resulting from readout.
However, such an architecture does introduce new
complexities and problems to the system, some of
which we addressed here while others still require
further investigation. On the system side, we have
shown that we can minimize the Bragg-mismatch
problem of the dual-wavelength scheme by properly
adjusting system parameters, primarily the thick-
ness of the crystal ~something that can be done con-
veniently for a holographic three-dimensional disk!.
We also combine peristrophic with angle multiplex-
ing to counter the poorer angular selectivity of thin
crystals, while we adjust the recording schedule to
compensate for the varying recording characteristics
for different crystal tilts. Also, by recording holo-
grams in the image plane, we can retrieve entire data
pages at one time with a simple plane-wave readout
beam, without the added complexity of spherical
beams or interleaving holograms. We were thus
able to record 1000 holograms and read them out
with significantly reduced decay by using two wave-
lengths.

Two main problems remain, however. The first is
the problem of dark conductivity. As was shown
above, dark erasure can severely limit the effective-
ness of the second wavelength at reducing the decay
rate. Furthermore, the dark erasure prevents a
dual-wavelength architecture from truly maintaining
a constant grating strength, because at best it can
only eliminate the decay caused by the readout pro-
cess. In contrast, periodic copying, for example, can
restore the strength of holograms regardless of the
cause of the holographic decay—whether it is due to
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readout or dark conductivity. Hence a dual-
wavelength scheme will probably be most useful
when it is used in conjunction with some other pro-
cess, such as copying, so as to expand the time frame
over which we can refresh the holograms. It might
be possible to affect the dark conductivity by chang-
ing the crystal temperature, impurity dopants, or
oxidation–reduction state.

The second problem is the density limitation. Be-
cause of the dx,min constraint, the dual-wavelength
system restricts the storage density of the system
except where thin crystals are being used. Alterna-
tively, if the crystal exhibits sharp changes in absorp-
tion behavior for small changes in wavelength, the
density can approach that of the single-wavelength
system. Otherwise the dual-wavelength system will
be most useful for storing large numbers of holo-
grams in a dynamic system in which high resolution
is not a necessity.

We thank Geoffrey Burr and Allen Pu for helpful
discussions. Ernest Chuang also acknowledges the
support of a National Science Foundation fellowship.
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