

A Picosecond Passively Mode-locked Vertical (Extended Cavity) Surface Emitting Diode Laser

Khalil Jasim, Qiang Zhang, A.V. Nurmikko

Division of Engineering and Department of Physics

Brown University

Aram Mooradian, Glen Carey, Wonill Ha

Novalux, Inc.

E.P. Ippen

EECS Department, MIT

Some History:

- edge emitting diode lasers modelocked both passively and actively (e.g. NEC 'hybrid' modelocked laser, $\tau_p \sim 2$ psec)
- But, modelocking on VCSELs offers benefits for on-chip geometry, ease of integration with micro/optoelectronics, and high density arrays

So far for VCSELs:

- active modelocking work in 1990's (Bowers, Ebeling)
- optically pumped high-power passively modelocked extended cavity VCSELs (Keller)

Now:

- passively modelocked (extended cavity) VCSEL diode
- challenge: device design and implementation in a vertical diode; SESAM

Why: applications from chipscale all-optical processors to bioinstrumentation

Device Idea: 1) Resonator configuration: saturation of absorption vs. gain External output 2) Compatibility with electrical transport coupler/SESAM (R~0.9) 3) Design of the saturable absorber aperture & AR coating n - contact **Device base**: A Large Aperture Extended Cavity VCSEL (Novalux Inc); $\lambda \sim 980$ nm n - GaAs substrate n - DBR 3-mirror coupled-cavity configuration strain -(R~70%) design for large aperture, high power compensated MQŴ operation; substrate part of resonator MOCVD grown GalnAs/GaAsP strain-٠ p - DBR compensated multiple QWs gain medium dielectric laver (R~99%) TEM₀₀ mode size controlled by extended p - contact cavity and internal aperture (50- 150μ m) Monolithic integration has been achieved

Semiconductor Saturable Absorber Mirror (SESAM) (W.Richter, Weimar)

		Bragg Mi Substrate	rror Stack	
Saturable absorption	1%	GaAs	InGaAs QW	
Saturation fluence	70µJ/cm²		Protection layer	
Relaxation time	20ps	100		
Saturable absorp	otion A	99 98 97 96 96 95 94 93 92 91 90 890 910	930 950 970 990 10 ⁻ Wavelength (nm)	10

"Z-shape" Folded Cavity Configuration

- level beyond threshold
 40mW average output power with an OC R~96%
- ~1W peak power, 1.1GHz rep. rate
- ~20 μ m spot size on SESAM

(photodiode output)

- Pulse width of 57ps @500mA (limited by "extra" n-DBR)
- Fast saturable absorber regime

- Power scalable for different reflectance of output coupler
- Mode-locking achieved for $\rm R_{oc}$ as low as 90%

V-shape Folded Cavity Configuration

- Shorter cavity length gives higher rep. rate ~ 3.6 GHz
- Comparable pulse width ~ 60ps (limited by "extra DBR")
- Less stable because of spot size on SESAM is larger

Linear Cavity Configuration

- Demonstrated stable multi-GHz rate picosecond pulse generation by passive mode-locking of an extended cavity VCSEL
- Peak powers >1 W and pulsewidths ~ 50 psec achieved in linear, "Z" and "V"-cavities
- Device design properly balances saturation of absorption (intracavity SESAM) and saturation of gain
- Considerably higher repetition rates (up to 100 GHz) and shorter pulses (~ psec)are possible by optimizing cavity design/parameters
- Goal: Monolithic integration of a passively modelocked VCSEL

