Del Mar Photonics

Third and Forth Harmonic Generator for Ti:Sapphire lasers: Three Case studies

Customer inquiry:

We have about 1 W across the range 780nm to 920 nm. We are interested mostly in tunability in the range 240-300nm. Pulse width is not very > important. If a (third + fourth) HG exists in one model, that would be great. Also it would be good for us to have several wavelength available at the same time, i.e. fundamental and harmonics.
I want to use this system for a photoemission microscope, and my first interest is in the tuning capability. The second interest is in building up a pump-and-probe system using the fundamental or 2nd harmonic as a pump beam and the third harmonic as probe. Do you have suggestions for the delay-line?

Answer:
We can offer our multiharmonic (SH, TH) generator unit. The simultaneous output will have around 10% (100 mW) of your input power in fundamental and each of harmonics (10% fundamental, 10% second and 10% third). Each harmonic has its own output (see attachment). The tuning range will be 260-300 nm for TH with your input tuning range.
The FH system will produce 205-230 nm radiation out of your laser (780-920)

 

=========================================================

 

Customer inquiry:
I'm interested in the 3^rd harmonic generator for an amplified Ti:sapphire laser. What is the maximum pulse energy? The system is a Coherent regenerative amplifier (RegA 9000) that produces 750 mW at a repetition rate of 100 kHz, which is a pulse energy of 7.5 microjoules in 50 femtoseconds. The beam diameter is 2.7 mm.

We have tried to use a Coherent 9300 harmonic system, but it is designed for oscillator energies of nanojoules, so it is too tightly focused on the crystal and generates white light.


Answer:

Please find enclosed the quotation for the TH generator along with the drawing. Please note that since the unit is non-standard the dimensions may be extended by +100 mm in length and +50 mm in width.

Third Harmonic Product brochure


 

Sample quote for Third Harmonic Generator for Amplified Ti:Sapphire Laser

Third Harmonic Product brochure - Third Harmonic Generator Manual - Forth Harmonic Generator manual - request a quote

ATsG800 Third Harmonic Generator
Second and third harmonic outputs
Input wavelength for TH – 750-900 nm
Input wavelength for SH – 710-960 nm
Input pulse width - >20 fs
Conversion efficiency for TH – 7-8% (depends on input
parameters)
Conversion efficiency for SH – >30% (depends on input
parameters)
Pulse broadening - <150 fs
Input pulse energy – 8 μJ

Unit price: $14,000
 

=================================================================

Customer inquiry:

I’m interested in the 3rd harmonic generator for an amplified Ti:sapphire laser. What is the maximum pulse energy? The system is a regenerative amplifier that produces 750 mW at a repetition rate of 100 kHz, which is a pulse energy of 7.5 microjoules in 50 femtoseconds. The beam diameter is 2.7 mm. We have tried to use a Coherent 9300 harmonic system, but it is designed for oscillator energies of nanojoules, so it is too tightly focused on the crystal and generates white light.

Del Mar Photonics:

We can offer about 7-8% efficiency, the version for 8 uJ will be non-standard. Please find enclosed the quotation for the TH generator along with
the drawing. Please note that since the unit is non-standard the dimensions may be extended by +100 mm in length and +50 mm in width.

Third harmonic generator (THG) is developed for frequency doubling and tripling of Ti-Sa amplifier radiation (λ=780-820 nm). Device is based on second harmonic generation (SHG) and sum-frequency generation (SFG) techniques and provides stable radiation in fs scale. TH generator is developed for high conversion efficiency.

Femtosecond third harmonic generation for amplified Ti:sapphire laser - THG brochure - THG manual - Request a quote

SPECIFICATIONS
• Pulse width - 40-60 fs
• TH efficiency - > 7 %*
• SH efficiency - >25 % (full output**)
• Input beam size (FWHM) - 2.7 mm ***
• Input energy in pulse > 8 μJ
• Temporal broadening - For TH pulse< 250 fs
For SH pulse <100 fs
• Input polarization - Linear- horizontal
• Output TH polarization - Linear- horizontal
• Output SH polarization - linear- vertical
• Output fundamental
beam polarization
- linear- vertical
• Input wavelength - 780 – 820 nm
• Output TH wavelength - 260 – 274 nm
• Output SH wavelength - 390 – 410 nm
• Dimensions - 500mm x 362mm x 188mm

* - assuming that pulse is compressed;
** - just after the flip-mirror M7;
*** - assuming that 1.5<M2<2.

Request a quote - Third Harmonic Product brochure - Third Harmonic Generator Manual - Forth Harmonic Generator manual - Third Harmonic Generation of Ti:Sapphire Laser Kits

 

Request a quote

 

 

Product Data Sheets

Del Mar Photonics Product brochures - Femtosecond products data sheets (zip file, 4.34 Mbytes) - Del Mar Photonics

Send us a request for standard or custom ultrafast (femtosecond) product

Pulse strecher/compressor
Avoca SPIDER system
Buccaneer femtosecond fiber lasers with SHG Second Harmonic Generator
Cannon Ultra-Broadband Light Source
Cortes Cr:Forsterite Regenerative Amplifier
Infrared cross-correlator CCIR-800
Cross-correlator Rincon
Femtosecond Autocorrelator IRA-3-10
Kirra Faraday Optical Isolators
Mavericks femtosecond Cr:Forsterite laser
OAFP optical attenuator
Pearls femtosecond fiber laser (Er-doped fiber, 1530-1565 nm)
Pismo pulse picker
Reef-M femtosecond scanning autocorrelator for microscopy
Reef-RTD scanning autocorrelator
Reef-SS single shot autocorrelator
Femtosecond Second Harmonic Generator
Spectrometer ASP-100M
Spectrometer ASP-150C
Spectrometer ASP-IR
Tamarack and Buccaneer femtosecond fiber lasers (Er-doped fiber, 1560+/- 10nm)
Teahupoo femtosecond Ti:Sapphire regenerative amplifier
Femtosecond third harmonic generator
Tourmaline femtosecond fiber laser (1054 nm)
Tourmaline TETA Yb femtosecond amplified laser system
Tourmaline Yb-SS femtosecond solid state laser system
Trestles CW Ti:Sapphire laser
Trestles femtosecond Ti:Sapphire laser
Trestles Finesse femtosecond lasers system integrated with DPSS pump laser
Wedge Ti:Sapphire multipass amplifier

 



E-mail us for a custom quote

Del Mar Photonics, Inc.
4119 Twilight Ridge
San Diego, CA 92130
tel: (858) 876-3133
fax: (858) 630-2376
Skype: delmarphotonics
sales@dmphotonics.com

Del Mar Photonics supplied Femtosecond Third Harmonic Generation for amplified Ti:Sapphire laser to Air Force Institute of Technology

Del Mar Photonics offers new Trestles fs/CW laser system which can be easily switched from femtosecond mode to CW and back.
Having both modes of operation in one system dramatically increase a number of applications that the laser can be used for, and makes it an ideal tool for scientific lab involved in multiple research projects.

Trestles LH10-fs/CW laser system at UC Santa Cruz Center of Nanoscale Optofluidics

 

Typical specifications are:

Trestles LH10-fs/CW laser system Request a quote
Ti:Sapphire femtosecond oscillator with CW operation option
Spatial mode: TEMoo;
Polarization: linear horizontal;
fs mode:
Tuning range (@10W pump): 750-850 nm;
Output power (@10W pump, 800 nm): >1500 mW;
Repetition rate: 80 MHz;
Pulse duration: <100 fs;
CW mode:
Tuning range (@10W pump): 750-850 nm;
Output power (@10W pump, 800 nm): >2000 mW in CW;
Linewidth (with two etalons): <2 GHz
Also included:
Thermostabilized breadboard;
Electronic starter with TTL output for mode-locked mode observation;
USB-controlled tuning slit for wavelength tuning in fs mode;
3-plate USB-controlled birefringent Lyot filter;
Two motorized USB-controlled etalons for linewidth control

DPSS LH10 (10 Watt Diode Pump Solid State Laser)
Average Output Power > 10 W
Wavelength 532 nm
Spectral Purity > 99.9 %
Spatial Mode TEM00
Beam Quality (M2) 1.0 - 1.1
Beam Ellipcicity < 1.0 : 1.1
Beam Diameter 2.3 mm ± 10%
Beam Divergence < 0.5 mrad
Pointing Stability < 2 μrad/°C
Power Stability < ± 0.25 % rms
Noise Standard version: < 0.2 % rms
Low noise (NET) version: < 0.03 % rms
Polarization > 100:1 vertical
Power Requirements
Operating Voltage 100-240 VAC, 50 Hz / 60 Hz
Power Consumption 500 W max, 300 W typical
Cooling Requirements
Laser Head Closed-loop chiller in Power Supply - Cooler
Power Supply (in Power Supply - Cooler) Air-cooled
Environmental Specifications
Operating Temperature 64-90°F (18-32°C)
Relative Humidity 8-85%, non-condensing
Laser Head - Physical Dimensions (Height x Width x Length)
2.7 x 5.3 x 10.1 inches
(69 x 135 x 256 mm)
Weight 7.0 lbs (3.2 kg) approx.
Cable Length 10 " (3 m)
Power Supply-Cooler - Physical Dimensions (Height x Width x Depth)
13.0 x 12.7 x 18.2 inches
(330 x 323 x 463 mm)
Weight 55 lbs (25 kg) approx.

 

Trestles fs-CW manual

Schematic setup of Trestles femtoseconds/CW laser system with built-in pump laser

Schematic setup of Trestles LH10-fs/CW laser system with built-in pump laser

Del Mar Photonics supply Trestles lasers as stand alone system, or as a one-box system with built-in DPSS pump laser.
The price of the system with DPSS pump depends on required output power.

 

The standard tuning elements indicated below are used in CW Ti:Sapphire lasers such as Trestles CW or Trestles fs/CW.

Those elements are also sold separately as standrad items or as a custom made components.

 

1) Thick etalon - request a quote
Thickness - 3 mm, diameter - 20 mm. Surface quality: Ð=1-2, N<1, ΔN<0.1,
λ/10, plane parallelism better than 10''. Thickness accuracy 5 um.



2) Thin etalon - request a quote
Thickness - 200 um, diameter - 15 mm. Surface quality: Ð=1-2, N<1, ΔN<0.1,
λ/10, plane parallelism better than 10''. Thickness accuracy 5 um.



3) Birefringent filter BRF - request a quote

We use a 3-plate assembled BRF (Lyot filter) with adjustable motorized mount (see attached drawing).

Total losses introduced into the cavity by the filter are 5% of the laser’s output power. The FSR is defined by the thinnest plate and equals to around - 1.3*1014 Hz, while the maximum width is controlled by the thickest plate and equals to approx. 3.1*1012 Hz.

Dimensions of plate assembly ('filter' in the picture): dia 44.5 mm, t=13.5 mm. It should be properly aligned (Brewster to the beam) and rotated by some rotating mount around its axis to provide wavelength tuning.

Birefringent Filter for tuning Ti:Sapphire laser

Del Mar Photonics, Inc.
4119 Twilight Ridge
San Diego, CA 92130
tel: (858) 876-3133
fax: (858) 630-2376
Skype: delmarphotonics
sales@dmphotonics.com

 

Pulse strecher/compressor
Avoca SPIDER system
Buccaneer femtosecond fiber lasers with SHG Second Harmonic Generator
Cannon Ultra-Broadband Light Source
Cortes Cr:Forsterite Regenerative Amplifier
Infrared cross-correlator CCIR-800
Cross-correlator Rincon
Femtosecond Autocorrelator IRA-3-10
Kirra Faraday Optical Isolators
Mavericks femtosecond Cr:Forsterite laser
OAFP optical attenuator
Pearls femtosecond fiber laser (Er-doped fiber, 1530-1565 nm)
Pismo pulse picker
Reef-M femtosecond scanning autocorrelator for microscopy
Reef-RTD scanning autocorrelator
Reef-SS single shot autocorrelator
Femtosecond Second Harmonic Generator
Spectrometer ASP-100M
Spectrometer ASP-150C
Spectrometer ASP-IR
Tamarack and Buccaneer femtosecond fiber lasers (Er-doped fiber, 1560+/- 10nm)
Teahupoo femtosecond Ti:Sapphire regenerative amplifier
Femtosecond third harmonic generator
Tourmaline femtosecond fiber laser (1054 nm)
Tourmaline TETA Yb femtosecond amplified laser system
Tourmaline Yb-SS femtosecond solid state laser system
Trestles CW Ti:Sapphire laser
Trestles femtosecond Ti:Sapphire laser
Trestles Finesse femtosecond lasers system integrated with DPSS pump laser
Wedge Ti:Sapphire multipass amplifier