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The infrared echo measurement probes the time scales of the molecular motions that couple to a
vibrational transition. Computation of the echo observable within rigorous quantum mechanics is
problematic for systems with many degrees of freedom, motivating the development of
semiclassical approximations to the nonlinear optical response. We present a semiclassical
approximation to the echo observable, based on the Herman–Kluk propagator. This calculation
requires averaging over a quantity generated by two pairs of classical trajectories and associated
stability matrices, connected by a pair of phase-space jumps. Quantum, classical, and semiclassical
echo calculations are compared for a thermal ensemble of noninteracting anharmonic oscillators.
The semiclassical approach uses input from classical mechanics to reproduce the significant features
of a complete, quantum mechanical calculation of the nonlinear response. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1633550#

I. INTRODUCTION

In principle, the absorption line shape of a vibrational
transition reflects the dynamics of nuclear degrees of free-
dom that interact with the transition. In practice, the spectral
line shape may be dominated by slow dynamics, obscuring
its full information content. Coherent multiple-pulse infrared
measurements, analogous to pulse sequences of multidimen-
sional NMR,1 can sort spectral line broadening dynamics ac-
cording to time scale, thereby probing nuclear dynamics in
the ground electronic state.2–8 Such measurements, including
the two-pulse and three-pulse vibrational echo
experiments,5,9–16 have been successfully applied to liquid
state and biomolecular systems.

The assignment of the temporal decays observed in co-
herent multiple-pulse infrared spectroscopy to specific mo-
lecular motions requires the computation of the observable
for a microscopic, mechanical model. The challenges posed
by large-scale time-dependent quantum mechanical calcula-
tions motivate the development of classical17–26 and
semiclassical27–29approaches to the observables of nonlinear
spectroscopy. We have reported a semiclassical formalism29

for the generalnth-order optical response functionR(n) that
is based on the Herman–Kluk approximation30–34 to the
quantum mechanical propagator. Within this approach,R(n)

is expressed as the average of a quantity that is computed
from n pairs of classical trajectories with associated stability
matrices, interrupted byn21 phase space jumps. The trajec-
tory pairs approximate quantum interference effects,35–40and
the phase-space jumps represent the effects of the radiation-
matter interaction. Calculations in the simplest case of linear
response,n51, for a thermal ensemble of anharmonic oscil-
lators demonstrated that the method provides quantitative
agreement with quantum mechanics for that case.29 The lin-
ear response calculation involves computing interference ef-
fects from a single pair of classical trajectories without phase
space jumps, and while its demonstrated accuracy is sugges-

tive, the full validation of the semiclassical method requires
calculation of a nonlinear observable.

To lowest order in perturbation theory in the radiation-
matter interaction, evaluating the observable in a two-pulse
or three-pulse vibrational echo measurement requires calcu-
lation of the third-order response functionR(3)(t3 ,t2 ,t1).41

We present here semiclassical calculations ofR(3)(t3,0,t1),
which is relevant to the two-pulse echo observable in the
limit of impulsive excitation. This quantity is computed with
the approach of Ref. 29 for a thermal ensemble of noninter-
acting Morse oscillators. The formalism29 is reviewed in Sec.
II, and general numerical strategies are discussed there. The
model is also described in Sec. II, and the particular numeri-
cal procedures applied to this model are detailed. Calcula-
tions are presented in Sec. III, and conclusions drawn from
these results are summarized in Sec. IV.

II. SEMICLASSICAL VIBRATIONAL ECHOES

Expansion of the classical mechanical electric polariza-
tion to third order in the electric field amplitudeE(t) defines
the third-order optical response function,41 R(3)(t3 ,t2 ,t1),
according to

P(3)~ t !5E
0

`

dt3E
0

`

dt2E
0

`

dt1R(3)~ t3 ,t2 ,t1!

3E~ t2t3!E~ t2t22t3!E~ t2t12t22t3!, ~1!

in which t1 ,t2 , andt3 are elapsed times between successive
radiation-matter interactions. The signal in a third-order mea-
surement with homodyne detection, for an optically thin
sample, may be related to the square of the appropriately
phase-matched component41 of P(3). The material system is
taken to haveF degrees of freedom, one of which is coupled
to the radiation with an electric dipole interaction. The dipole
is taken to be linear in this ‘‘active’’ coordinatex̂, so that the
response function can be expressed in terms of three nested
commutators41 involving x̂ and the initial density operatorr̂
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R(3)~ t3 ,t2 ,t1!5S i

\ D 3

Tr„x̂K̂~ t3!@ x̂,K̂~ t2!@ x̂,K̂~ t1!

3@ x̂,r̂ #K̂†~ t1!#K̂†~ t2!#K̂†~ t3!…, ~2!

with K̂(t)[exp(2iĤt/\) the propagator for a system with
HamiltonianĤ. The proportionality constant between the co-
ordinate and electric dipole operators has been suppressed.

Our approximation toR(3) is based on the Herman–Kluk

~HK! semiclassical approximation30–34 to the quantum
propagator,

K̂HK~ t !5~2p\!2FE dzuz~ t !&G~z,t !^zu, ~3!

with

G~z,t !5C~z,t !exp@ iS~z,t !/\#, ~4!

C~z,t !5Adet
1

2 S Mqq~z,t !1M pp~z,t !2 i\gMqp~z,t !1
i

\g
M pq~z,t ! D . ~5!

In the propagator of Eq.~3!, z denotes a point in 2F-dimensional phase space,z(t) represents the phase space point resulting
from propagation ofz for time t, and uz& is the coherent state with coordinate-space wave function,

^r uz&5S g

p D F/4

expS 2
g

2
~r2q!21

i

\
p•~r2q! D . ~6!

The spatial width parameter characterizing the coherent state is denotedg, andp andq are theF-dimensional momenta and
coordinates associated with that state. The classical action~Hamilton’s principal function! is denotedS(z,t) in Eq. ~4!. The
complex-valued prefactor of the HK propagator,C(z,t), is expressed in terms of stability matrices in Eq.~5!. These are
F-dimensional matrices, with elements given by, for example,

@Mqp~z,t !#ab[S ]qa~ t !

]pb~0! D
$pn(0)%nÞb$qn(0)%

, ~7!

with a, b, andn labeling degrees of freedom, andz[„q(0),p(0)…. The active degree of freedom will be labeleda50.
Substitution of the propagator in Eq.~3! into Eq.~2! yields then53 case of the semiclassicalnth-order response function

presented in Eq.~14! of Ref. 29,

R(3)~ t3 ,t2 ,t1!5\22E dz1

~2p\!F E dz2

~2p\!F ¯E dz6

~2p\!F G~z1 ,t1!G* ~z2 ,t1!

3G~z3 ,t2!G* ~z4 ,t2!G~z5 ,t3!G* ~z6 ,t3!^z6~ t3!uz5~ t3!&X„z6~ t3!,z5~ t3!…^z4~ t2!uz6&

3^z5uz3~ t2!&@X~z5 ,z3~ t2!!2X* „z6 ,z4~ t2!…#^z2~ t1!uz4&^z3uz1~ t1!&

3@X~z3 ,z1~ t1!!2X* „z4 ,z2~ t1!…#^z1uz2&
]

] p̄12
S ^z1ur̂uz2&

^z1uz2&
D , ~8!

with

X~zj ,zk![
^zj ux̂uzk&

^zj uzk&
5q̄ jk2 i

Dpjk

2g\
, ~9!

^zj uzk&5expS 2
g~Dqjk!2

4
2

~Dpjk!2

4\2g
1

i

\
p̄jk•DqjkD , ~10!

Dxjk[xj2xk ; x̄jk[~xj1xk!/2, ~11!

Dxjk5~xj !02~xk!0 ; x̄ jk5@~xj !01~xk!0#/2. ~12!

In Eqs.~11! and ~12!, x denotes either coordinate or momentum.
The signal in a two-pulse vibrational echo measurement in the limit of impulsive excitation, in which nuclear dynamics

have time scales long compared to laser pulse durations, can be calculated from the response function witht250.41 Setting
t250 in Eq. ~8! permits the integrations over the phase space pointsz3 and z4 to be performed exactly, using the
completeness42 of coherent states,
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R(3)~ t3,0,t1!5\22E dz1

~2p\!F E dz2

~2p\!F E dz5

~2p\!F E dz6

~2p\!F G~z1 ,t1!G* ~z2 ,t1!

3G~z5 ,t3!G* ~z6 ,t3!^z6~ t3!uz5~ t3!&X„z6~ t3!,z5~ t3!…^z2~ t1!uz6&^z5uz1~ t1!&

3$@X„z5 ,z1~ t1!…2X* „z6 ,z2~ t1!…#21g21%^z1uz2&
]

] p̄12
S ^z1ur̂uz2&

^z1uz2&
D . ~13!

The expression in Eq.~13! follows from a single approxima-
tion: the HK semiclassical propagator in Eq.~3!. Evaluation
of R(3) in Eq. ~13! requires the density matrix in the coherent
states representation. In the numerical calculations presented
below, we treat the density matrix within the high-
temperature approximation32 discussed in Ref. 29,

~2p\!2F ^z1ur̂uz2&

^z1uz2&
→ f cl~ z̄12!, ~14!

with the classical mechanical phase space distribution de-
notedf cl . This approximation was shown to work well even
at relatively low temperature for a semiclassical calculation
of the linear response function.29

For a system ofF degrees of freedom, the third-order
response function is related in Eq.~13! to an 8F-dimensional
integral. Calculating the integrand in Eq.~13! for each choice
of the timest1 and t3 requires computing two classical tra-
jectories of durationt1 originating atz1 andz2 and two tra-
jectories of durationt3 originating atz5 and z6 . The initial
conditions for the second pair of trajectoriesz5 and z6 are
constrained to be close in phase space to the concluding
phase-space points of the first pair of trajectoriesz1(t1) and
z2(t1) by the coherent-state overlap factors^z2(t1)uz6&
3^z5uz1(t1)&, whose form is given in Eq.~10!. Performing
the integration in Eq.~13! presents difficulties that also arise
in the computation of a variety of dynamical properties with
semiclassical propagators.32,36–40Though the integral is real-
valued and finite, the integrand is complex-valued and diver-
gent in time. This temporal divergence arises from the
growth with time of the HK prefactors,C(z,t) in Eq. ~5!,
contained withinG(z,t) in Eq. ~13!, each of which diverges
as the square root of time for the integrable model of the
following section, and exponentially in the more general case
of chaotic dynamics. Complex-valued divergent contribu-
tions to the integral of varying phase interfere to cancel the
divergences and to approximate the oscillations characteriz-
ing quantum dynamics. An unbiased Monte Carlo evaluation
is inappropriate for such an integral, and choice of an impor-
tance sampling procedure is a critical aspect of the calcula-
tion.

In the following section, we calculate the nonlinear re-
sponse function for an ensemble of noninteracting one-
dimensional anharmonic oscillators,F51, by applying the
‘‘phase distribution’’ strategy proposed by Sun and Miller43

to evaluate semiclassical approximations to correlation func-
tions. In this procedure, the absolute magnitude of the
complex-valued integrand is used as an unnormalized sam-
pling distribution in a Metropolis Monte Carlo integration.

We write the complex-valued integrand in Eqs.~13! and~14!
in terms of its absolute valueJ and phaseF,

R(3)~ t3,0,t1!5E dz1E dz2E dz5E dz6

3J~z1 ,z2 ,z5 ,z6 ;t1 ,t3!

3exp@ iF~z1 ,z2 ,z5 ,z6 ;t1 ,t3!#, ~15!

J5
b

8p3m\5 uC~z1 ,t1!C* ~z2 ,t1!C~z5 ,t3!C* ~z6 ,t3!

3^z6~ t3!uz5~ t3!&X„z6~ t3!,z5~ t3!…^z2~ t1!uz6&

3^z5uz1~ t1!&$@X„z5 ,z1~ t1!…2X* „z6 ,z2~ t1!…#21g21%

3^z1uz2& p̄12f cl~ z̄12!u. ~16!

Use of J as a sampling distribution requires its normaliza-
tion, with the associated definition of a weight function
W(t1 ,t3),

W~ t1 ,t3!5E dz1E dz2E dz5E dz6J~z1 ,z2 ,z5 ,z6 ;t1 ,t3!.

~17!

The response function is then expressed in terms of a nor-
malized sampling distribution P(z1 ,z2 ,z5 ,z6 ;t1 ,t3)
[J(z1 ,z2 ,z5 ,z6 ;t1 ,t3)/W(t1 ,t3),

R(3)~ t3,0,t1!

5W~ t1 ,t3!E dz1E dz2E dz5E dz6P exp@ iF#. ~18!

Application of the Metropolis algorithm44 produces

R(3)~ t3,0,t1!'
W~ t1 ,t3!

N (
s

exp@ iF~Zs!#. ~19!

A set of values of$z1 ,z2 ,z5 ,z6% is denotedZs , with the
index s labeling theN steps in a Metropolis random walk
throughZ space. According to the Metropolis procedure, the
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point Zs11 is included with unit probability ifJ(Zs11)
.J(Zs) and with probabilityJ(Zs11)/J(Zs) otherwise. This
sampling procedure has the advantage that the temporally
divergent contributions to the integrand are included in the
sampling function, so that the integral is expressed in Eq.
~19! as a sum of complex-valued terms of unit absolute
value.

Unlike the integrand in Eq.~15!, the integrand in Eq.
~17! is positive definite. Nevertheless, the integral required to
computeW in Eq. ~17! is itself a candidate for evaluation by
a Monte Carlo method with importance sampling. One
choice for an unnormalized sampling distribution for this
integral is

J0~z1 ,z2 ,z5 ,z6 ;t1!5u^z2~ t1!uz6&^z5uz1~ t1!&

3^z1uz2&u f cl~ z̄12!. ~20!

This distribution emphasizes regions of the integration space
with the following properties. The second set of phase-space
points,z5 andz6 , are ‘‘close’’ in the sense described above to
the concluding phase-space points of the initial pair of tra-
jectories,z1(t1) andz2(t1), z1 andz2 are close in this sense,
and initial mean momenta and coordinates,z̄12, are associ-
ated with large values of a Boltzmann distribution. This sam-
pling distribution also has the advantage that it can be nor-
malized analytically,

W05E dz1E dz2E dz5E dz6J0~z1 ,z2 ,z5 ,z6 ;t1!

5~4p\!3F. ~21!

For the model treated in the following section, we have de-
termined empirically that the integral in Eq.~17! may be
more efficiently sampled using a multistep procedure de-
scribed below, than by using the distribution in Eq.~20!.
Calculations ofW from Eq. ~17! using the unnormalized
sampling distributionJ0 yield an answer that is noisier and
that appears to converge towards a different result compared
to a calculation with the same number of sampling points
using the multistep method described below. As shown in the
following section,R(3) calculated usingW evaluated by the
multistep procedure generally agrees with exact quantum
mechanics. UsingW sampled according toJ0 produces an
R(3) result that is systematically too large. The less than op-
timal sampling provided by the distributionJ0 suggests the
use of an alternative distribution that depends on the end-
points of the second pair of trajectories,z5(t3) and z6(t3).
An analogy may be drawn to the simulation of rare events,
where sampling procedures must emphasize trajectories
starting in an ‘‘initial’’ or ‘‘reactant’’ state that eventually
reach a region of configuration space representing a ‘‘final’’
or ‘‘product’’ state.43,45

A more efficient sampling procedure for the integral in
Eq. ~17! may be devised by identifying factors in the inte-
grandJ that are significant on different time scales. We write
J in Eq. ~16! in terms of a factorC that contains the tempo-
rally diverging HK prefactors, a factorX that contains
coherent-state matrix elements of the coordinate operator, a
factorO containing overlaps of coherent states, andf cl , the
classical phase space distribution,

J5CXOf cl~ z̄12!, ~22!

C5
b

8p3m\5 uC~z1 ,t1!C* ~z2 ,t1!C~z5 ,t3!C* ~z6 ,t3!u,

~23!

X5uX~z6~ t3!,z5~ t3!!$@X„z5 ,z1~ t1!…2X* „z6 ,z2~ t1!…#2

1g21% p̄12u, ~24!

O5u^z6~ t3!uz5~ t3!&^z2~ t1!uz6&^z5uz1~ t1!&^z1uz2&u. ~25!

For the Morse oscillator model described below, we have
observed that for relatively small values oft1 and t3 , J is
dominated by the factor

J1~z1 ,z2 ,z5 ,z6 ;t1 ,t3!5O~z1 ,z2 ,z5 ,z6 ;t1 ,t3! f cl~ z̄12!.
~26!

The unnormalized sampling distributionJ1 differs fromJ0 in
Eq. ~20! in the inclusion of the absolute value of an overlap
factor for the final coherent states,u^z6(t3)uz5(t3)&u, which
constrains the endpoints of the second trajectory pair to be
close in phase space. On the time scale of the energy-
dependent period of the anharmonic oscillator, the factorX
becomes significant. This factor is a quartic function of the
averages and differences of positions and momenta of vari-
ous trajectory pairs, and its value can span several orders of
magnitude. It is necessary to assign correct statistical weights
to sets of trajectories for which this factor is large. However,
because the coordinates and momenta of the oscillator are
bounded for a given energy, at long timesJ is dominated by
C in Eq. ~23!, which increases without bound for increasing
t1 and t3 .

Because of the approximate separation of time scales
associated with the different factors inJ that are shown in
Eq. ~22!, we adopt a procedure that treats these factors sepa-
rately. The calculation ofW in Eq. ~17! is carried out as a
series of nested integrations, such that contributions toJ that
are important at ever later time scales are successively incor-
porated at each stage. We begin by using the analytically
normalizable sampling distributionJ0 in Eq. ~20! to evaluate
the integral ofJ1 in Eq. ~26!,

W1~ t1 ,t3!

5E dz1E dz2E dz5E dz6J1~z1 ,z2 ,z5 ,z6 ;t1 ,t3!, ~27!

5W0E dz1E dz2E dz5E dz6

3P0~z1 ,z2 ,z5 ,z6 ;t1!u^z6~ t3!uz5~ t3!&u. ~28!

The integral in Eq.~28! is evaluated by a Monte Carlo
method with sampling distributionP0[J0 /W0 ,

P0~z1 ,z2 ,z5 ,z6 ;t1!

5~4p\!23FexpS 2
g

4
~Dq62t1

2 1Dq51t1
2 1Dq12

2 ! D
3expS 2

1

4g\2 ~Dp62t1
2 1Dp51t1

2 1Dp12
2 ! D f cl~ z̄12!,

~29!
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Dzjkt[zj2zk~ t !. ~30!

The distributionP0 is expressed here in terms of the mean
and difference variables of the initial conditions for the first
pair of trajectoriesz̄12 and Dz12 and in terms of difference
variables connecting the endpoints of the first pair of trajec-
tories to the initial conditions of the second trajectory pair
Dz62t1

and Dz51t1
. The distribution is Gaussian in all vari-

ables except the mean initial coordinateq̄12. While the form
of P0 is independent oft1 , generating the value of the dis-
tribution for a given set of$z1 ,z2 ,z5 ,z6% requires calculation
of two trajectories of durationt1 . These trajectories deter-
mine z1(t1) andz2(t1), which, for givenDz62t1

andDz51t1
,

specify the values ofz5 andz6 .
The weight functionW1 is required in the normalization

of a sampling distributionJ2 , which incorporatesX in Eq.
~24!,

J2~z1 ,z2 ,z5 ,z6 ;t1 ,t3!

5J1~z1 ,z2 ,z5 ,z6 ;t1 ,t3!X~z1 ,z2 ,z5 ,z6 ;t1 ,t3!, ~31!

W2~ t1 ,t3!

5E dz1E dz2E dz5E dz6J2~z1 ,z2 ,z5 ,z6 ;t1 ,t3!, ~32!

5W1~ t1 ,t3!E dz1E dz2E dz5E dz6

3P1~z1 ,z2 ,z5 ,z6 ;t1 ,t3!X~z1 ,z2 ,z5 ,z6 ;t1 ,t3!. ~33!

The normalization factorW2 in Eq. ~33! is evaluated by the
Metropolis method with sampling distributionP1[J1 /W1 .
In each step of the Metropolis random walk, the quantities
z̄12, Dz12, Dz62t1

, andDz51t1
are varied. A final application

of this procedure yieldsW(t1 ,t3) in Eq. ~17!,

W~ t1 ,t3!5W2~ t1 ,t3!E dz1E dz2E dz5E dz6

3P2~z1 ,z2 ,z5 ,z6 ;t1 ,t3!C. ~34!

This integral is computed with sampling distributionP2

[J2 /W2 . Our calculation ofR(3)(t3,0,t1) at fixed values of
t1 andt3 thus requires four nested Monte Carlo integrations.
The integral in Eq.~28! yieldsW1 , which is used to calculate
W2 in Eq. ~33!, which in turn is required to computeW in
Eq. ~34!, which is then applied to evaluateR(3) in Eq. ~18!.
This calculation is particularly numerically demanding, be-
cause the sampling distributions in each of these integrals are
time dependent. Evaluation of the magnitude of the sampling
distribution for a particular set of initial conditions
z1 ,z2 ,z5 ,z6 requires computation of a pair of trajectories of
durationt1 in the case ofP0 in Eq. ~28!, and requires com-
putation of an additional trajectory pair of durationt3 in the
cases ofP1 in Eq. ~33! andP2 in Eq. ~34!.

We apply this procedure in the following section to com-
pute R(3)(t3,0,t1) for a thermal ensemble of noninteracting
Morse oscillators,29 each with Hamiltonian

Ĥ5
p̂2

2m
1D~12e2aq̂!2. ~35!

The density matrix has the canonical formr̂5exp(2bĤ)/
Tr$exp(2bĤ)%. Calculations with the HK propagator require
specifying a value for the coherent-states width parameterg
in Eq. ~6!. For the calculations presented here,g was as-
signed a value close to that appropriate to a harmonic oscil-
lator, g'Amv/\. Here,v is the harmonic frequency of the
Morse oscillator, given by

v5aA2D

m
. ~36!

In the linear-response calculations of Ref. 29, we explored
the effects of varying the magnitude ofg, and demonstrated
that accuracy and convergence are optimized46 for values in
this range. Time-dependent phase-space coordinates, stability
matrices, and Hamilton’s principal function were computed
without numerical integration, using the analytical formula-
tion of dynamics of the Morse oscillator in terms of action-
angle variables.29,47,48The existence of an analytical solution
for the Morse oscillator dynamics allows these quantities to
be calculated at a given set of time variables, without com-
puting their values over a range of earlier times. However,
coarse-grained trajectories were computed to ensure the cor-
rect choice of branch in the complex square root involved in
the HK prefactors in Eq.~5!.

The integration in Eq.~28! was performed by a Monte
Carlo procedure using the nearly Gaussian sampling distri-
butionP0 in Eq. ~29!. For each set of time values, 105 sets of
four time-propagations sufficed to attain convergence. The
integrations in Eqs.~33!, ~34!, and ~18! were performed by
Metropolis Monte Carlo. Metropolis moves in the eight vari-
ables$z̄12,Dz12,Dz62t1

,Dz51t1
% were chosen from truncated

uniform distributions symmetric about zero. The integrations
producingW2 and W converged with 107– 108 sets of four
time-propagations, and showed a robust independence on
Metropolis step size. The integrations producingR(3) con-
verged more slowly and with a greater sensitivity to step
size. The calculations ofR(3) also employed 107– 108 sets of
four time propagations. Monte Carlo steps could be rejected
either through the Metropolis criterion or if they produced a
dissociative trajectory. Dissociative trajectories are generated
both from the high-energy tail of the Boltzmann distribution
in Eq. ~29!, and from the phase-space jumps, whose distri-
butions are independent of temperature. All such trajectories
were discarded from the calculation, in principle jeopardiz-
ing the detailed-balance condition inherent in the Metropolis
algorithm. We observed that both the fraction of Monte Carlo
moves rejected by the Metropolis criterionf re j and the frac-
tion of dissociative trajectoriesf diss increased with increas-
ing time. For the parametersb\v52 andbD525.6, em-
ployed below in Fig. 5,f diss increased to 0.13 andf re j

increased from 0.32 to 0.88 during the time ranges studied.
For b\v54 andbD525.6, the parameters of Fig. 6 below,
f diss increased from 0.05 to 0.35, andf re j increased from
0.30 to 0.87. For the parameters used in Fig. 8 below,b\v
55 andbD563.9, f diss increased from 0.01 to 0.09, and
f re j increased from 0.32 to 0.85. This integration procedure
has the advantage that the calculation ofR(3) is fully paral-
lelizable in the sense that the computations at each set of
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time values are performed independently. These semiclassi-
cal calculations ofR(3)(t3,0,t1) are computationally inten-
sive, even for a model of one degree of freedom. Each nu-
merical calculation ofR(3) presented in the following section
employed approximately 700 sets of values of (t1 ,t3), either
;700 values oft3 for calculations with fixedt1 or ;700
values of both times for calculations witht15t3 . A typical
R(3) calculation required approximately 60 processor days
using AMD Athlon MP20001 processors. This time in-
cludes the calculation ofW1 in Eq. ~28! (;1 processor day!,
W2 in Eq. ~33! (;10 processor days!, and W in Eq. ~34!
(;25 processor days!, as well as the computation ofR(3) in
Eq. ~18! (;25 processor days!.

III. NUMERICAL RESULTS

We next present and compare quantum mechanical, clas-
sical mechanical, and semiclassical calculations of the third-
order response function,R(3)(t3,0,t1), for a thermal en-
semble of noninteracting Morse oscillators. Quantum
mechanical calculations ofR(3)(t3,0,t1) are shown in Fig. 1
as a function oft3 for fixed t1 . For the Morse oscillator, the
response function in Eq.~2! has the form of the product of a
dimensional factor (m2vD)21 and a dimensionless function
of vt1 andvt3 depending on two additional parameters: the
classical mechanical quantitybD and the quantum mechani-
cal quantityb\v. Figure 1 and all subsequent figures show
the dependence of the dimensionlessm2vDR(3) on time
variables scaled byv. In Fig. 1, bD525.6 andb\v50.5.
The quantumR(3) is calculated by evaluating Eq.~2! in the
energy representation47 and restricting all sums to bound
states. In the limit of impulsive excitation,t1 corresponds to
the delay time between excitation pulses andt3 is the detec-
tion time, typically integrated over in a measurement. The
delay time is varied in Fig. 1 fromt1575 in the solid curve
to t15100 in the dotted curve tot15150 in the dashed
curve. For a system characterized by static line broadening,
the peak of the echo signal is expected to occur att3't1 .41,49

In the present model, the thermal distribution of oscillator
energies produces static line broadening, but the pattern of

intensities in the echo signal for an anharmonic oscillator in
the absence of dissipation is shown in Fig. 1 to be more
complex than that predicted by simpler models of a two-level
system.50

The response function probed in an echo experiment
may be divided into ‘‘rephasing’’ terms with the potential to
generate an echo peaked neart3't1 , and ‘‘nonrephasing’’
terms, with the capacity to produce an echo at
t3'2t1 .9,22,41,51A negative value oft1 corresponds to inter-
changing the order in time of the two applied pulses.9,22,41,51

For the Morse oscillator,R(3)(t3,0,t1) is nearly periodic both
in t3 and in t1 , with approximate periodt[2p/D, where
D5\v2/2D is the anharmonic frequency decrement be-
tween successive one-quantum transitions. For fixedt1 , the
response function therefore can show a series of echoes at
t3't11nt and another series of echoes att3'2t11nt,
with n an integer. Figure 1 shows the range 0<t3<t, with
t'320. For eacht1 value shown in Fig. 1, the pattern shown
repeats nearly periodically over intervals of durationt. The
appearance ofR(3) on the interval 0<t3<t depends on the
magnitude oft1 relative both tot and tot/2. For t1,t/2,
there are two significant echoes, unequal in intensity, peaked
at t3't1 and att3't2t1 . The earlier echo arises from the
‘‘rephasing’’ contribution toR(3), while the later echo is a
periodic image of the ‘‘nonrephasing’’ contribution peaked at
t352t1 . This is the situation depicted by the solid and dot-
ted curves in Fig. 1. Fort1't/2, these two echoes merge
into a single peak att3't1't/2. This is approximately the
situation shown by the dashed curve, for whicht15150 and
t/2'160. Fort/2,t1,t, echoes occur att3't1 and t3't
2t1 , but with the ‘‘nonrephasing’’ peak earlier than the
‘‘rephasing’’ one. At t1't, the amplitude of the response
function is greatly diminished with peaks att3'0 and t3

't. These last strongly quantum mechanical cases are not
illustrated in Fig. 1. Sincet}\21, in the limit of classical
mechanics,t→`, the period of the echo signal becomes
infinite, and the earliest peak of the ‘‘nonrephasing’’ echo for
positive t3 moves towards infinitet3 . The remaining classi-
cal echo is peaked att3't1 .

Quantum and classical mechanical calculations of
R(3)(t3,0,t1) as a function oft3 at t1575 are compared in
Fig. 2. The solid curve shows the result of a classical me-
chanical calculation, computed forbD525.6 from the
\→0 limit of Eq. ~2!,19,21

R(3)~ t3,0,t1!52
b

m S ^@Mqp~z,t3!#00@M pp~z,2t1!#00&

2
b

m
^@Mqp~z,t3!#00p~2t1!p~0!& D . ~37!

Here, p(t) denotes the momentum of the active degree of
freedom, and the angular brackets indicate a thermal average
over the canonical phase space distribution. The stability ma-
trices in Eq. ~37! are defined in Eq.~7!. Trajectories and
stability matrices required in Eq.~37! were calculated using
the analytical dynamics of the classical Morse oscillator in
terms of action-angle variables,29,47,48as described in the pre-
ceding section. The contribution to the observable from dis-
sociative trajectories is neglected.29 The dashed curve in Fig.

FIG. 1. The third-order response functionR(3)(t3,0,t1) is calculated from
quantum mechanics forb\v50.5 andbD525.6. The delay time is varied
from t1575 ~solid curve! to t15100 ~dotted curve! to t15150 ~dashed
curve!.
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2 shows the corresponding quantum mechanical result, also
for bD525.6 and withb\v52.0, computed from Eq.~2!.
The approximate period of the quantum response function is
t'160, so thatt1575't/2 and the quantum echo displays a
single peak on the interval 0<t3<t. Classical and quantum
echoes are each peaked att3't1 and have similar magni-
tudes. The rapid oscillation in the quantum case is character-
ized by a lower frequency than the classical result.

The quantum calculation in Fig. 2 is reproduced as the
dashed curve in Fig. 3. The solid curve in Fig. 3 shows the
semiclassical calculation from Eq.~15!, also for t1575,
bD525.6, andb\v52.0. The semiclassical result shows
excellent agreement with quantum mechanics, both with re-
spect to amplitude and frequency.

Since the echo response is peaked att3't1 in both clas-
sical and quantum mechanics, we consider the dependence of
the response function near this peak on delay time by defin-
ing the echo response functionRE(t) by RE(t)
[R(3)(t,0,t). Calculations ofRE(t) are shown in Fig. 4 for
bD525.6. The solid curve shows the classical mechanical
result computed from Eq.~37!. The classicalRE(t) in Fig. 4
shows an oscillation at a frequency approximately equal to

twice the harmonic frequencyv, and a linear drift associated
with the linear divergence of stability matrix elements for a
one-dimensional anharmonic oscillator.51–53 The dashed
curve in Fig. 4 shows the quantum mechanicalRE(t), also
for bD525.6 and withb\v52.0, the parameters used in
Figs. 2 and 3. Like the classicalRE(t), the quantum me-
chanical result oscillates at a frequency near 2v, but with a
frequency shift relative to the classical result that is evident
in Fig. 4 at longer times. At short times, classical and quan-
tum results agree well, but the envelope of the quantum re-
sponse function shows a peak neart35t/2'80 that is absent
in classical mechanics.

The quantumRE(t) from Fig. 4 is repeated in Fig. 5 as
the dashed curve. The solid curve in Fig. 5 shows the semi-
classical approximation toRE , computed from Eq.~15!.
While the semiclassical approximation slightly overestimates
the amplitude, it reproduces the recurrence att't/2 and fre-
quency shift that distinguish the quantum from the classical
response functions. We next consider the dependence of
RE(t) on b\v at fixed bD. Since the classical mechanical
limit is attained forb\v→0 at fixedbD, increasingb\v at
fixed bD increases the potential importance of quantum ef-
fects. The dashed curve in Fig. 6 shows the quantum me-
chanicalRE for bD525.6 andb\v54.0, twice the value of

FIG. 2. The third-order response functionR(3)(t3,0,t1) is shown for t1

575 with bD525.6. The solid curve shows the classical mechanical result
from Eq. ~37!, and the dashed curve shows the quantum result from Eq.~2!
with b\v52.0.

FIG. 3. The dashed curve repeats the quantumR(3)(t3,0,t1) from Fig. 2 for
t1575 with bD525.6 andb\v52.0, and the solid curve shows the semi-
classical result from Eq.~15!.

FIG. 4. The vibrational echo response functionRE(t) is shown forbD
525.6. The solid curve is the classical mechanical response, and the dashed
curve shows the quantum mechanical result forb\v52.0.

FIG. 5. The vibrational echo response functionRE(t) is shown forbD
525.6 andb\v52.0. The dashed curve shows the quantum result from
Fig. 4, and the solid curve is the semiclassical calculation from Eq.~15!.
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b\v as in Fig. 4. The solid curve shows the semiclassical
approximation forbD525.6 andb\v54.0, computed from
Eq. ~15!. The accuracy of the semiclassical result degrades,
not surprisingly, asb\v increases. Nevertheless, the semi-
classical approximation remains qualitatively correct, repro-
ducing the two dominant frequencies of the quantum result,
and even displaying some of the fine structure in the peak
amplitudes.

Figures 7 and 8 show the effect onRE(t) of temperature
variation. The quantum~dashed! and classical mechanical
~solid! echo response functions are shown in Fig. 7 at a tem-
perature reduced by a factor of 2.5 compared to the cases
shown in Fig. 4:bD563.9 andb\v55.0. The classicalRE

shows the same oscillations and linear drift displayed in Fig.
4, but the amplitude of the oscillations has increased with
decreasing temperature. In the quantum mechanical case, the
amplitude of oscillations approaching the first recurrence in-
creases more gradually than at higher temperature. The quan-
tum result from Fig. 7 is reproduced as the dashed curve in
Fig. 8, while the semiclassical approximation from Eq.~15!
is shown by the solid curve. While the semiclassical result
overestimates amplitudes somewhat more than at the higher
temperature of Fig. 5, the semiclassical approximation re-

mains surprisingly accurate at the very low temperature of
Fig. 8, despite the use of a high-temperature approximation
to the density matrix in Eq.~14!.

IV. CONCLUSIONS

Our previous calculations29 of the linear response func-
tion, R(1)(t), for the model of Eq.~35! demonstrated that a
semiclassical approximation based on the Herman–Kluk
~HK! propagator of Eq.~3! and the high-temperature ap-
proximation to the density matrix in Eq.~14! is quantita-
tively correct over a wide range of temperature. Figures 3, 5,
6, and 8 of the present work demonstrate that this pair of
approximations provides an excellent approximation to the
quantum mechanicalnonlinear response function for the
same model. For a thermal distribution of noninteracting an-
harmonic oscillators, the quantum echo response function
differs from the classical mechanical limit in exhibiting re-
currences and in the existence of a quantum mechanical fre-
quency shift. Both of these effects are reproduced by the
semiclassical calculations. These results for a model with a
single degree of freedom represent a rigorous test of the
semiclassical approach. In a larger system with dissipation,
effectively irreversible dephasing processes can obscure the
differences between classical and quantum calculations.22,54

The success of the HK propagator for the vibrational echo
calculations reported here suggests that this semiclassical
method may be usefully applied to the many measurements
in nonlinear vibrational spectroscopy that probe such re-
sponse functions.41

Our findings that the third-order response function rel-
evant to the vibrational echo can be modeled with the HK
propagator are consistent with the growing literature28,33,34

on the successful application of this semiclassical approxi-
mation to a variety of dynamical properties. However, previ-
ous applications of this propagator to dynamical observables
have emphasizedtwo-time correlation functions.32,43,55 An
exception is the study of the three-time correlation function
related to resonance Raman scattering by Ovchinnikov
et al.28 which employed HK dynamics to treat nuclear mo-
tions on ground and excited state electronic surfaces. The
different physics of this vibronic observable dictated a dif-

FIG. 6. The vibrational echo response functionRE(t) is shown forbD
525.6 andb\v54.0. The dashed curve shows the quantum mechanical
result, and the solid curve displays the semiclassical calculation from Eq.
~15!.

FIG. 7. The vibrational echo response functionRE(t) is shown within clas-
sical mechanics at a temperature reduced by a factor of 2.5 compared to Fig.
4, bD563.9, by the solid curve. The quantum result forbD563.9, b\v
55.0 is shown by the dashed curve.

FIG. 8. Quantum~dashed curve! and semiclassical~solid curve! echo re-
sponse functions are shown forbD563.9, b\v55.0, a temperature re-
duced from that in Fig. 5 by a factor of 2.5.
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ferent mathematical formulation from that employed here to
treat an observable involving a single electronic state. The
vibronic observable permits the application of the Condon
approximation, removing dependence on nuclear coordinates
from the dipole operator. As a consequence, the resonance
Raman signal could be computed from a single HK
‘‘forward-backward’’ propagator28,37,56incorporating dynam-
ics on both electronic surfaces, without the need for repeated
propagation steps connected by phase-space jumps. The
present work differs in the application of the HK formalism
to calculate amultitime response functiondescribing nuclear
dynamics within a single electronic state. The dependence on
nuclear coordinates of the dipole operator must be included,
resulting in a semiclassical calculation requiring repeated
classical propagation steps, interrupted by phase-space
jumps. This work is also distinct from previous semiclassical
computations ofcorrelation functionsin its treatment of a
response function, a quantum average over commutators of
operators, as shown in Eq.~2!. By evaluating the commuta-
tors explicitly, annth-order response function could be writ-
ten as a sum of 2n correlation functions, each of which could
then be evaluated separately. The formalism employed here29

instead treats the entire response function in a single compu-
tation, directly including interference among individual, con-
stituent correlation functions.

Calculation of the echo response functionRE(t) from
Eq. ~13! for a system ofF degrees of freedom requires per-
forming an 8F-dimensional integral of an integrand whose
evaluation requires two pairs of classical trajectories related
by a pair of phase-space jumps. Convergence of this calcu-
lation for theF51 case treated above required large num-
bers of classical trajectories per time point, even with the use
of an importance sampling algorithm.43 CalculatingRE by a
straightforward application of this approach to largeF poses
a serious challenge. The calculations presented here demon-
strate that a semiclassical method based on the HK propaga-
tor can provide accurate calculations of the nonlinear re-
sponse of an anharmonic system. It remains for the future to
develop additional approximations to make the calculation
more tractable for largeF, while retaining the level of accu-
racy demonstrated here.
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